Cellular Automata in Cryptographic Random Generators

نویسنده

  • Jason Spencer
چکیده

Cryptographic schemes using one-dimensional, three-neighbor cellular automata as a primitive have been put forth since at least 1985. Early results showed good statistical pseudorandomness, and the simplicity of their construction made them a natural candidate for use in cryptographic applications. Since those early days of cellular automata, research in the field of cryptography has developed a set of tools which allow designers to prove a particular scheme to be as hard as solving an instance of a wellstudied problem, suggesting a level of security for the scheme. However, little or no literature is available on whether these cellular automata can be proved secure under even generous assumptions. In fact, much of the literature falls short of providing complete, testable schemes to allow such an analysis. In this thesis, we first examine the suitability of cellular automata as a primitive for building cryptographic primitives. In this effort, we focus on pseudorandom bit generation and noninvertibility, the behavioral heart of cryptography. In particular, we focus on cyclic linear and non-linear automata in some of the common configurations to be found in the literature. We examine known attacks against these constructions and, in some cases, improve the results. Finding little evidence of provable security, we then examine whether the desirable properties of cellular automata (i.e. highly parallel, simple construction) can be maintained as the automata are enhanced to provide a foundation for such proofs. This investigation leads us to a new construction of a finite state cellular automaton (FSCA) which is NP-Hard to invert. Finally, we introduce the Chasm pseudorandom generator family built on this construction and provide some initial experimental results using the NIST test suite.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

The Use of Linear Hybrid Cellular Automata as Pseudo Random Bit Generators in Cryptography

The main goal of this paper is to study the behaviour of a particular type of hybrid cellular automata, as cryptographically secure pseudorandom bit generators. The hybrid cellular automata considered have been passed the statistical tests de…ned in the cryptographic literature to study the security of the sequences generated for cryptographic purposes: frequency test, serial test, poker test, ...

متن کامل

USE OF RECONFIGURABLE CELLULAR AUTOMATA, IMPLEMENTED WITH FPGAs, IN CRYPTOGRAPHIC APPLICATIONS

Cellular automata (CA) are dynamic systems, successfully used in mathematics, biology, chemistry or physics. The random generated by these systems has also been used in computer science (e.g. games industry) as well as in cryptographic applications (e.g. random number generators). As in the case of more well-known LFSR (Linear Feedback Shift Register), the usefulness of these systems in cryptog...

متن کامل

Generic parity generators design using LTEx methodology: A quantum-dot cellular automata based approach

Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...

متن کامل

Linear Cellular Automata as Discrete Models for Generating Cryptographic Sequences

This work shows that a wide class of cryptographic sequences, the so-called interleaved sequences, can be generated by means of linear multiplicative polynomial cellular automata. In fact, this type of onedimensional linear 90/150 cellular automata can be devised as generators of pseudo-random sequences. Moreover, these linear automata generate all the solutions of a type of difference equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1306.3546  شماره 

صفحات  -

تاریخ انتشار 2013